
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2150

Analysis of Different Regression Testing

Approaches

Chandana Bharati
1
, Shradha Verma

2

Department of Computer Science, MRIU, Faridabad, India
1

Department of Computer Science, MRIU, Faridabad, India
2

Abstract: As the software systems evolve with time, regression testing is an important and very expensive activity to

ensure that this evolution will not disrupt the existing functionalities of the system. An important issue, in this context, is

optimal selection of subset of test cases from the initial test suite to minimize the testing time, cost and effort. Researchers

have proposed various types of regression test selection techniques that are code-based, and model-based. Code-based

regression test selection techniques can be effectively applied for unit-testing. It uses relationship between code parts and

test cases that traverse them to locate test cases for retest when code is modified. Broad adoption of model centric

development has created opportunities for model-based regression testing as models also evolve. It selects test cases based

on model modification, so it uses relationships between model elements and test cases that traverse those elements to locate

test cases for retest. This paper is the analysis of both code-based and model-based regression testing technique according

to some comparison and evaluation criterion.

Keywords: Regression Testing, Code-based regression testing, Model-based regression testing,Selective regression testing.

1. Introduction

Regression testing is expensive and essential part of an

effective testing process, for achieving quality of the

software and for gaining confidence in modified software.

Regression testing is performed on modified software to

provide confidence that modified code behaves as intended

and that modifications have not adversely affected the

unmodified part of the software[12].

In regression testing existing test suite developed for the

original program can be reused to test the modified software.

Instead of rerunning whole tests from original test, selective

regression testing approach select a subset of test suite

relevant for modified and affected part of the program.

Selective regression testing is effective and reduce cost iff

the cost of selecting a part of test suite is less than the cost of

running the tests that are omitted.

During maintenance, both the specification and

implementation of the software are modified to fix defects,

change functionality, or satisfy new requirements. For both

types of modifications regression testing can be categorized

into two types: Corrective regression testing and Progressive

regression testing. Corrective regression testing is applied

when specification is not changed: probably some other

changes are done i.e. correcting an error. Progressive

regression testing is applied when specifications have been

changed and new test cases must be designed for the added

part of the specification.

It is well known that regression testing generally has been

applied in maintenance phase. However with object-oriented

programming techniques, evolutionary process model or an

incremental model is followed by projects. Under this

model, components from legacy systems or third parties will

be re-used in new projects. Thus regression testing is an

important activity to gain confidence in re-used components.

Regression testing can be applied in various ways code-

based, specification-based and model-based. Code-based

techniques are white-box method that is they select test cases

based on the difference between original and modified code.

It uses relationships between code parts and test cases that

traverse them to locate test cases for retest when code is

modified. An important issue with unit-testing is scalability

problem. As software systems grow in size and complexity,

so does the need for higher level models and abstractions in

their development. Model centric development creates

opportunities to drive regression testing processes at higher

abstraction levels. A model-based technique is a black-box

method. It selects test cases based on model modification, so

it uses relationships between model elements and test cases

that traverse those elements to locate test cases for retest.

In the next section we present background about the

regression testing, in section 3 and 4 the survey of existing

code-based and model-based techniques is presented with

detail discussion. Code-based and Model-based regression

testing approaches are evaluated in section 5, finally we

concluded in section 5.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2151

2. Background

Regression testing process involves selecting a subset of the

test cases from the original test suite, and if necessary

creates some new test cases to test the modified software.

2.1 Regression Testing

Let 𝑃 is the original software product, 𝑃′ is the modified

software product and T is the set test cases to test 𝑃. A

typical regression testing on modified software proceeds as

follows:

1. Select 𝑇′ ⊆ 𝑇, a set of test cases to execute on the

modified software product 𝑃′.
2. Test 𝑃′ with 𝑇′, to verify modified software product’s

correctness with respect to T′.
3. If necessary, create 𝑇′′ , a set of new test cases to test 𝑃′.
4. Test 𝑃′ with new tests 𝑇′′, to validate 𝑃′ with respect to

𝑇′′.
5. Create 𝑇′′′, a new test suite and test history for 𝑃′, from

𝑇,𝑇 ′ , and 𝑇 ′′ .

In performing the above mentioned steps, a selective retest

approach addresses several problems. Step 1 involves the

regression test selection problem. This problem also

identifies test cases in T that are now obsolete for 𝑃′.Test t is

obsolete if t specifies an input to 𝑃′ is no longer valid for 𝑃′,
or t specifies an invalid input-output relation for 𝑃′. Step3

involves the coverage identification problem: the problem of

identifying portions of 𝑃′ or 𝑆′ that requires additional

testing. Steps 2 and 4 address the test execution problem.

Step 5 addresses the test maintenance problem: the problem

of updating and storing test information.[8]

2.2 Framework for Evaluation

M.J Harrold[11] proposed a set of basis in which selective

retest techniques can be compared and evaluated. These

categories are inclusiveness, precision, efficiency,

generality, and accountability.
Inclusiveness

Inclusiveness measures the extent to which a selective retest

strategy S selects modification-revealing tests from the

initial test suit T for inclusion in T′ where a test 𝑇𝑖 ∈ 𝑇 is

modification-revealing if it produces different outputs in P

and P′. Suppose T is containing n modification-revealing

tests, and S selects m of these test-cases. The inclusiveness

of S with respect to P, P′ and T is expressed as (

(m/n)∗100).

Note: If for all P, P′ and T, S is 100% inclusive relative to

P, P′ and T then S is safe.
Precision

Precision the extent to which a selective retest strategy S

ignores test cases that are non-modification-revealing. Test

cases that are selected by a technique but are not relevant are

false positives. A selective retest strategy S is, therefore,

precise iff it there are no false positives. Suppose T contains

n non-modification-revealing tests, and S selects m of these

tests. The precision of S relative to P , P′ and T is the

percentage calculated by the expression ((m/n)∗100).
Efficiency

Efficiency of a selective retest strategy S is measured in

terms of its space and time requirements. Space efficiency is

affected by the test history and program analysis information

a method store. Where time is concerned, a selective retest

strategy is more economical than a retest-all strategy if the

cost of selecting T′ is less than the cost of running the tests

in T- T′. Thus, efficiency of S varies with the size of test

cases that a method stores, as well as with the computational

cost of that method.
Generality

The generality of a selective retest strategy S is its ability to

function in a wide and practical range of situations, for ex. in

the presence of arbitrarily complex code modifications.
Accountability

Accountability refers the extent to which a selective retest

strategy promotes the use of structural coverage criteria as it

increase the effectiveness of testing. If a program is initially

tested with such a criterion, then after modifications it is

desirable to confirm that the criterion remains satisfied.

3. Code based Approaches

Code based techniques select tests based on changes made to

two versions of the code. These techniques are very specific

to the programming language used to develop the code. It

uses relationships between code parts and test cases that

traverse them to locate test cases for retest when code is

modified.

3.1 Control dependence graph based Test Selection

Technique

Rothermel, Harrold, and Dedhia [7][17] presented a control-

flow based regression test selection algorithm. They used

CFGs to represent the implementation of procedures P and

P’ and use edges in the CFGs as potential affected entities.

Affected entity means the entity is affected (changes its

behavior) by the modification. By traversing in parallel the

CFG for P and the CFG for P’, affected entities are selected.

Given two nodes 𝑁 and 𝑁′, from 𝐺 and G′ respectively,

algorithm determines whether the two nodes have successor

nodes whose labels differ along some pair of identically

labeled outgoing edges. If 𝑁 and 𝑁′ have any such

successors, test cases that traverse the edges to the

successors are modification traversing.

In this case, algorithm selects the edge in 𝐺 that connects 𝑁

to that successor and adds it to the set of affected entities. If

𝑁 and 𝑁′ have equivalent successors with like-labeled

edges, traversing continues along the edges.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2152

Fig 1. CFGs G and G’ for P and P’

In Figure 1, there is a sample CFG 𝐺 on the left with its

modified version 𝐺′ on the right. For 𝐺 in Figure1, a test

suite T has been given consisting of test cases t1, t2, and t3

and the edge-coverage matrix for this test suite is shown in

Table 1.

From 𝐺 to 𝐺′, a node S5a has been inserted and node S7 has

been erroneously deleted. The algorithm begins the traversal

at entry nodes in 𝐺 to 𝐺′, and traverses like paths in the two

graphs by traversing like-labeled edges until detecting a

difference in the target nodes of these edges. When the

algorithm reaches node P4 and P4′ in 𝐺 and 𝐺′, it finds that

the targets of the branches labeled “T” differ. It adds edge

(P4,S5) to the set of affected entities and stops its traversal

along this path. Therefore test case T2 is selected for

regression testing. The algorithm then considers the edges

labeled “F” from node P4. When reaches nodes S6 and S6’

in 𝐺 and 𝐺′, it discovers that the labels of the successors of

these nodes, S7 and 𝑆8′ differ; therefore, edge (S7, S8) is

added to the set of tests for retesting, and traversal along

this path has been stopped. There might be changes that

occur later in the same path. Before it reaches these changes,

a test case will certainly pass the first change. Identifying the

first change is enough for identifying test cases for later

changes. There are no additional affected edges found in

subsequent traversals.

After all affected edges have been identified; they are used

with the edge-coverage matrix to select test cases.

3.2 Evaluation

This technique is Safe. It selects each modification

traversing test that executes a new or modified statement in

P’, therefore selects each modification revealing test that

may produce different output for P and P’

It is not precise because if a node containing the definition of

variable V is changed, the algorithm selects all tests that

enter the region (E) that encloses V. However there may

exist a test t that never reaches a use of V and cannot cause

the modified program to produce different output.

It is efficient, it can run in time O(|T| 𝑛2) ,Can be fully

automatable ,does not require prior computation of mapping

original program and its modified version, in the presence of

significant changes avoid processing and stops traversing.

It support generality, it can be applied to all procedural

languages; support both intraprocedual and interprocedural

test selection.

It does not fulfill Coverage Criteria because does not

guarantee the traversal of the modified part of the program.

3.3 Program dependence graph based Test Selection

Technique

Rothermel [12] presented a program dependence graph

based regression test selection algorithm. A PDG represents

both control dependence and data dependence in a single

graph. It contains several types of nodes; statement nodes,

region nodes which summarize the control dependence

conditions necessary to reach statements in the region and

predicate node.

The algorithm uses PDGs that represent the implementation

of procedure P and 𝑃′, test suite T of the original program,

and a Boolean function Correspondence that tracks the

mapping between nodes in both PDGs. The Proposed

algorithm excludes tests that execute changed definition

statement, but do not reach uses of changed

definition. The use of control dependence information

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2153

Fig 2: PDGs G and G’ for program P and P’

ensures selection of safe test sets while data dependence

information improves precision in test selection.

The algorithm begins the traversal at entry nodes in original

PDG G and modified PDG 𝐺 ′and check the correspondence

between nodes N and 𝑁 ′. Correspondence is a pair of

arrays that track each node in 𝐺 and 𝐺′. If correspondence

between two nodes in 𝐺 and 𝐺′ can not be mapped, then all

tests through N must be selected. Now traversal through cd-

successors of 𝑁 and 𝑁′ is not required, because all tests

reaching nodes beneath 𝑁 and 𝑁′ via the chain of control

dependencies summarized by 𝑁 have now been selected. If

correspondence between nodes 𝑁 and 𝑁′ can be mapped,

mapped nodes are examined. If nodes representing

predicate, output or control transfer statements are new,

modified or deleted or nodes are marked as “affected” then

all tests through

𝑁 must be selected. If n contains a variable definition, data

dependence edges originating at n is used to find nodes U

containing uses reached from n. Some of these nodes may

have already been marked “visited” during traversal. For

any such visited nodes, algorithm selects tests in

 𝑁.history ∩ 𝐶.history

where 𝐶 is the cd-predecessor of U, because all such tests

exercise a changed definition and may reach the use at node

U. If U is not marked “visited”, U is marked as “affected”

and tests in 𝑁.history is

attached to 𝐶. Algorithm considers each new or

modified cd- successor n of 𝑁′ and each deleted cd-

successor n of 𝑁.

Traversal starts with E and E’, and marked as “visited”.

Correspondence between cd-successors of E and E’ is

equivalent causing algorithm to check E and E’ has new,

modified or deleted cd-successors. Since they don’t have

such cd-successor, algorithm also finds no affected uses in

the cd-successors of E and E’ and thus call itself on P3 and

P3’. After comparing R1 and R1’, then R2 and

R2’, then P6 and P6’ with no differences, R3 and R3’ are

invoked. Node pairs (S7,S7’) and (S8,S8’) are equivalent

and S8a is new. Since S8a does not involve a predicate,

there are no “affected” uses under R3 and R3’ and S8a is a

new cd-successor of R3’, data dependence edge originating

at S8a is used to find the uses of x3.S16’ uses the definition

and marked as “visited”. The test T2 is selected because this

is only test in both R2.history and R3.history. When

considered R5 and R5’, it has been found that cd-successor

P13 of R5 has been modified. Since P13 is a predicate, all

tests through R5.history is selected i.e. T2,…,T5. If S16 had

not already been visited, and would marked as “affected”

then test {T2} in R3.history would be attached to S16.

3.4 Evaluation

This technique is Safe and identifies a precise number of

tests, by providing a means for excluding tests that execute

changed definition statement, but do not reach uses of

changed definitions. It is also efficient, support generality,

and fulfills coverage criteria and guarantees the traversal of

the modified part of the program.

4. Model-based Approach

This paper also presents an analysis of model based

regression testing techniques. These techniques generate

regression tests using different system models. Most of the

techniques are based on the UML models. The techniques in

this survey use some models like, class diagrams, state

machines diagrams, activity diagram, and use case diagrams

etc.

4.1Class and State Diagram-Based Regression Test

Selection Technique

Farooq et al [3] have proposed a model based selective

technique using class diagram and state diagram model of

UML to classify the test cases and generate regression test

suite.

Table 2: Test Information

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2154

In UML based modeling, artifacts are interrelated. A change

in one artifact may cause a change in another artifact

without even being reflected on it. For example, a

message in the sequence diagram may change due to a

change in its respective operation in the class diagram. This

change may not be reflected directly in the sequence

diagram and consulting the class diagram becomes essential

to obtain this change information.

They defined two types of changes in their proposed

approach; Class-driven changes and State-driven changes.

The changes in data members, operations, relationships and

dependencies are catered by using the information from

class diagram and were obtained by comparing baseline and

delta version of the class diagram. These changes may or

may not reflect on the state machine. The changes in object

behavior were catered by analyzing the state machine and

were obtained by comparing the baseline and delta version

of the state machine and by using the Class-driven changes.

The Class Driven Comparator takes the baseline and

delta version of class diagram, class invariants, and

operation contracts, and generates Class-driven Changes

(CDC). The State Machine Comparator takes CDC and

baseline and delta state machines, contracts and state

invariants as input and generates State-driven Changes

(SDC). SDC, along with baseline test suite, are fed to

Regression Test Selector. The regression test selector

classifies the baseline test suite into obsolete, reusable, and

retestable test cases.

The class driven changes they identified are

ModifiedExpression , ChangedMultiplicity ,

ModifiedProperty , ModifiedAttribute,

ModifiedOperationParameter , ModifiredOperation ,

Modifiend Association, Added/deleted Attribute ,

Added/deleted Operation,Added/deleted association.

State driven changes state machines are composed of

regions and regions are composed of states, transitions and

other vertices. They identified changes associated with

states and transitions. The state driven change categories

identified were added/deleted state, modified state,

added/deleted transition, modified transition, modified

event, modified actions, and modified guards. After the

identification of these changes, test cases can be generated

according to the categories of both classes of changes,

which are in fact the test suite for regression testing.

To verify the applicability of the proposed technique, they

have applied it on a case study.

4.2 A UML class and sequence diagrams -Based

Regression Test Selection Technique

The approach proposed by L. Naslavsky et al[2] adopts

UML class and sequence diagrams as its modeling

perspective. They identified two phases for this approach. In

the 1
st
 phase an infrastructure comprised of test-related

models has been created and fine-grained relationship

among these models and test cases from models are

generated. This infrastructure is used, in turn, to support the

identification of test cases for retest in the 2
nd

 phase.

The approach uses model-based control flow graph(mbcfg)

information to support impact analysis on behavioral

models . The following are considered as examples of direct

class diagram changes and how they would impact other

entities: (1) If a class attribute that comprise an OCL

constraint (e.g. operation pre-, post-condition) is changed,

the OCL constraint is considered changed; (2) If an OCL

constraint navigates a changed association, that OCL

constraint is considered changed; (3) if a class invariant is

changed, all operations of the class are considered changed

(including the constructor).

The proposed approach selects test cases to re-test the

implementation. Thus, the change impact identification on

behavioral models aims at locating entities in the model that

might require implementation modification. It seizes

existence of mbcfg along with the traceability models to

perform necessary impact analysis.

They adapted the code-based algorithm in [15] to perform

traversal of mbcfg (phase 2). The adapted algorithm checks

if an edge leading up to a node was modified, prior to

checking for node modifications. The edge is considered

modified if it has a modified constraint (guard). Guards’

modifications are identified using traceability relationships

to locate corresponding guards in the UML model.

Modified edges are added to the set of dangerous edges.

Identification of modified guards results in addition of all

other edges with the same tail to the set of dangerous edges.

Indeed, a guard change might result in modified test cases’

expected behavior. Nodes’ equivalence is identified using

traceability relationships to locate the corresponding

operations in the UML model. Then, it checks if that

element was modified looking it up in the differencing

model and in the list of impacted operations. Node

modification also results in addition of triggering edge to

the set of dangerous edges.

4.3 Evaluation

This technique is safe, precise, and fulfills coverage criteria.

4.4 Risk-based regression Testing

The proposed approach[14] is considered as risk-based

regression testing. In this approach the authors have

considered the risk related to the software potential defects

as a threat to the failure after the changes as a significant

factor, so a risk model is presented as well as the model of

regression testing. In [16] Amland presented a simple risk

model with only two elements of Risk Exposure: (i) The

probability of a fault being present.(ii) The cost

(consequence or impact) of a fault in the corresponding

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2155

function if it occurs in operation. The mathematical formula

to calculate Risk Exposure is RE (f) = P (f) × C (f).

Purpose of regression testing is to achieve software quality

and coverage criteria. Two types of test cases are to be

included to achieve and differentiate these requirements,

targeted tests and safety tests. Targeted tests are test cases

that exercise important affected requirement attributes, and

Safety tests are test cases selected to reach predefined

coverage target.

Traceability supports cross-checking by linking

requirements, analysis, design, implementation, and test

cases. In specification-based testing, traceability specifies

which test case belongs to a given requirements attribute.

To generate the targeted tests the activity diagram model is

used.

To test the affected requirements that are customer-visible,

first kind of regression test cases, Targeted tests, are used.

Activity diagram is traversed to identify affected edges, and

then test cases are selected that execute the affected edges

based on the traceability matrix to create Targeted Tests.

Next to generate test cases that are required to achieve

coverage target and are risk-based, four steps are used. In

the first step the cost for each test case is assessed. The cost

of every test case is categorized through 1-5 where the

lowest value depicts the lower cost and the high value as

higher cost. Two kinds of costs are taken into consideration:

(i) The consequences of a fault as seen by the customer, (ii)

The consequences of a fault as seen by the vendor. In the

second step severity probability is derived for each test case.

The severity probability is calculated by multiplying the

number of defects and the average severity of defects. In the

third step Risk Exposure is calculated for each test case by

multiplying the cost and severity probability of defects. The

obtained value is considered as the risk of the test case. In

the fourth and final step the test cases with higher value of

risk are chosen and included in the regression test suite.

This technique is evaluated on a large industrial based case

study.

4.5 Evaluation

This technique is safe, precise, and fulfills coverage criteria.

5. Conclusion

This survey presents code-based and model-based

regression testing and their analysis with respect to the

parameters presented by Harrold[11]. It can be helpful in

exploring new ideas in the area of regression testing

specifically both types of regression testing. This evaluation

of the model based regression testing techniques can be

helpful to improve the existing techniques where they lack.

This evaluation can also be very helpful to evaluate code

based techniques and how these techniques can be adopted

for model based regression technique.

References

1. Q.Farooq, M. Zohaib Z.Iqbal, Z.Malik, M. Riebisch, A Model-Based

Regression Testing Approach for Evolving Software Systems with Flexible
Tool Support, In proceeding of: 17th IEEE International Conference and

Workshops on the Engineering of Computer-Based Systems, ECBS 2010,

Oxford, England, UK ,pp 41-49, March 2010.

2. L. Naslavsky , D. J. Richardson , A Model-Based Regression Test

Selection Technique, Proc. ICSM , pp 515-518, 2009.

3. Q Farooq, M. Zohaib,Z. Iqbal ,An Approach for Selective State Machine

based Regression Testing,ACM proceedings of the 3rd international
workshop on Advances in model-based testing,pp 44-52, 2007.

4. L. Naslavsky, H. Ziv, D. J. Richardson, Towards Traceability of Model-

based Testing Artifacts, AMOST,pp 105-114, July 2007.

5. L. Naslavsky,Using Traceability to Support Model-Based Regression
Testing, ASE, pp 567-570,November 2007.

6. H. Muccini, M. Dias, Software architecture-based regression testing,

The journal of System andSoftware,pp1379-1396, 2006.

7. Harrold, M.J., 1998. Architecture-based regression testing of evolving

systems. In: Proceedings of the International Workshop on the Role of
Software Architecture in Testing and Analysis – ROSATEA 98, July, pp. 73–77,1998.

8. F. Rothermel, M.J. Harrold ,A safe, efficient Regression Test Selection
Technique, ACM Transactions on Software Engineering and Methodology,

V.6, no.2, pages 173-210, April 1997.

9. E. Wong, J. R. Horgan, A Study of Effective Regression Testing in

Practice. proceedings of the 8th IEEE International Symposium on

Software Reliability Engineering (ISSRE’97), pp-264-274, November 1997.

10.G. Rothermel, M.J. Harrold,Analyzing Regression Test Selection

Techniques , TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.
22, NO. 8,pages 529-551, AUGUST 1996.

11. G. Rothermel, M.J Harrold,A framework for evaluating regression Test
Selection Techniques, In: Proceeding of the 16th International Conference

on Soft. Engineering,ICSE 1994, Sorrento, Italy, pp 201-210, May 1994.

12. G. Rothermel, M.J Harrold, Selecting Tests and identifying

Test Coverage Requirements for Modified Software,In Proceeding of the

ACM international Symp. On Software,pp-169-184, August 1994.

13. H.K.N leung and White. Insight into Regression Testing. In
Proceedings of the conference on Software Maintenece-1989,pp 60-69,

October 1989.

14. Y. Chen, R. Probert, and D. Sims. Specification-based regression test

selection with risk analysis. In CASCON ’02: Proceedings of the 2002

conference of the Centre for Advanced Studies on Collaborative research,
page 1, 2002.

15. G. Rothermel, M.J Harrold, Regression Test Selection for Java
Software,Proc. of the ACM Conf. on OO Programming, Systems,

Languages, and Applications (OOPSLA'01), ACM Copyright,2001.

16. Stale Amland, Risk Based Testing and Metrics: Risk analysis

fundamentals and metrics for software testing including a financial applica-

tion case study, The Journal of Systems and Software, Vol. 53, 2000, pp.
287-295.

17. Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia, Regression
Test Selection for C++ Software, Journal of Software Testing, Verification,

and Reliability, Vol. 10, No. 2, June2000.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5457371
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5457371
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5457371

